ഗണിതം
സമഷ്ടി (Space), സംഖ്യ , പരിമാണം (Quantity), വിന്യാസം (Arrangement) എന്നീ വിഷയങ്ങളെപ്പറ്റിയും അവയുടെ മറ്റു ശാസ്ത്രശാഖകളിലുള്ള പ്രയോഗത്തെപ്പറ്റിയും പ്രതിപാദിക്കുന്ന ഒരു ശാസ്ത്രശാഖ.[2].ഗണിത ശാസ്ത്രകാരന്മാർ പാറ്റേണുകളെ(Pattern)കണ്ടെത്തുകയും ,അവയുടെ പഠനത്തിലൂടെ പ്രമാണങ്ങൾ(Axiom) ആവിഷ്കരിക്കുകയും ,അവയുടെ നിർധാരണത്തിലൂടെ പുതിയ സത്യങ്ങൾ കണ്ടെത്തുകയും സിദ്ധാന്തങ്ങൾ ആവിഷ്കരിക്കുകയും ചെയ്യുന്നു. ഭൗതീകശാസ്ത്രം ,വൈദ്യശാസ്ത്രം ,സാമൂഹ്യശാസ്ത്രം ,സാങ്കേതികശാസ്ത്രം തുടങ്ങി ഒരുപാടു ശാസ്ത്രശാഖകളിൽ അതിപ്രധാനമായ ഘടകമായി ഗണിതശാസ്ത്രം മാറിയിട്ടുണ്ട്. മറ്റു ശാസ്ത്രശാഖകളിലെ ഗണിതത്തിന്റെ പ്രയോഗവുമായി ബന്ധപ്പെട്ട പ്രയുക്ത ഗണിതശാസ്തം ,ഒരുപാടു പുതിയ കണ്ടുപിടുത്തങ്ങൾക്കും,പുതിയ ഗണിതശാസ്ത്രശാഖകളുടെ ഉത്ഭവത്തിനു തന്നെയും കാരണമായിട്ടുണ്ട്. പ്രത്യേകിച്ചൊരു പ്രായോഗികതയെയും അടിസ്ഥാനമാക്കിയല്ലാതെ ഗണിതത്തിന്റെ തനതായ വഴിയിൽ സഞ്ചരിക്കുന്ന ശുദ്ധ ഗണിതത്തിനും ഇപ്പോൾ ഒരുപാട് പ്രായോഗിക വശങ്ങൾ കണ്ടെത്തിയിട്ടുണ്ട്. ഉള്ളടക്കം [മറയ്ക്കുക] * 1 ചരിത്രം o 1.1 ബാബിലോണിയയിൽ o 1.2 ഈജിപ്തിൽ o 1.3 ഗ്രീസിൽ o 1.4 റോമിൽ o 1.5 ഭാരതത്തിൽ o 1.6 ഇസ്ലാമിക ഗണിതം o 1.7 എ.ഡി 5ആം നൂറ്റാണ്ടുമുതൽഎ.ഡി16ആം നൂറ്റാണ്ടുവരെ o 1.8 എ.ഡി 16ആംനൂറ്റാണ്ടുമുതൽ എ.ഡി19ആം നൂറ്റാണ്ടുവരെ * 2 ഗണിതശാസ്ത്രശാഖകൾ o 2.1 ഗണിതശാസ്ത്രശാഖകളുടെ ആവിർഭാവം * 3 പ്രയുക്ത,ശുദ്ധ ഗണിതശാസ്ത്രം * 4 ഭാരതീയ ഗണിത ശാസ്ത്രജ്ഞൻമാർ o 4.1 AD 1800 നു മുമ്പ് o 4.2 AD 1800 നു ശേഷം o 4.3 AD 1900 നു ശേഷം * 5 അവലംബം [തിരുത്തുക] ചരിത്രം പ്രധാന ലേഖനം: ഗണിതത്തിന്റെ ഉത്ഭവം എല്ലാ ലോക സംസ്ക്കാരങ്ങളുടെയും വളർച്ചയുടെ കൂടെ കുറച്ചു ഗണിതവും വളർന്നിട്ടുണ്ട്. ചിലപ്പോഴെല്ലാം, ഗണിതം ഒരു സംസ്ക്കാരത്തിൽ നിന്നു മറ്റു സംസ്ക്കാരങ്ങളിലേയ്ക്കു പകർന്നു പോയിട്ടുണ്ട്. ഇപ്പോൾ ലോകമാസകലം ഗണിതശാസ്ത്രം ഒരൊറ്റ ശാസ്ത്രശാഖയായി നിലകൊള്ളുന്നുവെങ്കിലും, അതിന്റെ പിന്നിൽ ബൃഹത്തായ ചരിത്രമുണ്ട്. അതിന്റെ വേരുകൾ പുരാതന ഈജിപ്തിലും, ബാബിലോണിയയിലും, ഇന്ത്യയിലുമാണെങ്കിലും, ധൃതഗതിയിലുള്ള വളർച്ച പുരാതന ഗ്രീസിലായിരുന്നു. പുരാതന ഗ്രീസിൽ ഗണിതം അറബിയിലേയ്ക്കു വിവർത്തനം ചെയ്യപ്പെടുകയും, അതേ സമയം തന്നെ പുരാതനഭാരത ഗണിതവും അറബിയിലേക്ക് വിവർത്തനം ചെയ്യപ്പെടുകയും ചെയ്തു. പിന്നീടു് ഈ അറിവുകൾ ലാറ്റിൻ ഭാഷയിലേക്ക് വിവർത്തനം ചെയ്യുകയും പടിഞ്ഞാറൻ യൂറോപ്പിൽ എത്തുകയും ചെയ്തു. അനേകം വർഷങ്ങളിലൂടെ അതു ലോകത്തിന്റെ സമ്പത്താവുകയും ചെയ്തു. ഗണിതസമ്പ്രദായങ്ങൾ ഗവേഷണപഠനങ്ങൾക്ക് വളരെ പ്രയോജനപ്രദമാണെന്ന് തിരിച്ചറിഞ്ഞത് ധനതത്വശാസ്ത്രജ്ഞരാണ്.വില,ആവശ്യം,ലഭ്യത,ഉപയോഗം തുടങ്ങിയ അടിസ്ഥാന ആശയങ്ങളും ഇവ തമ്മിലുള്ള ബന്ധവും ഗണിതീയപ്രതീകങ്ങളുപയോഗിച്ച് ചിത്രീകരിച്ചാൽ എളുപ്പവും സൂക്ഷ്മവുമാകുമെന്ന് കണ്ടെത്തി.അപ്രകാരം ഗണിതീയ ധനതത്വശാസ്ത്രം എന്നൊരു ശാസ്ത്രശാഖക്ക് രൂപം നൽകി.ധനതത്വശാസ്ത്രമേഖലയിൽ ഗണിതത്തിന്റെ പ്രയോഗം വഴിയുണ്ടായ നേട്ടങ്ങൾ മറ്റെല്ലാ വിജ്ഞാനശാഖകളിലേക്കും ഗണിതശാസ്ത്രം പ്രചരിക്കുവാനിടയാക്കി.ചുരുക്കത്തിൽ ഇന്ന് എല്ലാ ശാഖകളും ഗണിതശാസ്ത്രത്തിന്റെ അനുപ്രയുക്ത മേഖലകളായി മാറി. മെസ്സൊപ്പൊട്ടേമിയയിലും ബാബിലോണിയയിലുമാണ് ചരിത്രത്തിൽ ഗണിതശാസ്ത്രശാഖ വികസിച്ചിരുന്നത്.ചുട്ടെടുത്ത കളിമൺ ഇഷ്ടികകളിൽ രേഖപ്പെടുത്തി വെച്ചിരുന്ന ഇവരുടെ ശാസ്ത്രവിജ്ഞാനം വായിച്ചെടുത്തിട്ടുണ്ട്.ബി.സി 2100നു മുൻപ് എഴുതപ്പെട്ടിരിയ്ക്കുന്ന ഇവ കാണിയ്ക്കുന്നത് സ്ഥാനവില ഉപയോഗിച്ച് സംഖ്യകൾ സൂചിപ്പിയ്ക്കുന്ന രീതി അന്ന് നിലവിലിരുന്നു എന്നതാണ്.അവർ ഉപയോഗിച്ചിരുന്നത് 60ന്റെ ഘാതങ്ങളായിരുന്നു.മരത്തൊലിയിൽ രേഖപ്പെടുത്തിയ കൈയെഴുത്തുഗ്രന്ഥം പൗരാണികഭാരതത്തിലെ ഗണിതവിജ്ഞാനത്തിന് സാക്ഷ്യം നൽകുന്നു. [തിരുത്തുക] ബാബിലോണിയയിൽ ഇഷ്ടികകളിൽ ക്യൂണിഫോം ലിപിയിൽ എഴുതപ്പെട്ട വാണിജ്യവിഷയങ്ങളഅയിരുന്നു ബാബിലോണിയയിൽ ആദ്യകാലങ്ങളിൽ ഉണ്ടായിരുന്നത്.ഏകദേശം ബി.സി 3000നു ശേഷമുള്ള രേഖകൾ ആണ് കണ്ടുകിട്ടിയിരിയ്ക്കുന്നത്.ഇവരുടെ സംഖ്യാസമ്പ്രദായം 60നെ അടിസ്ഥാനമാക്കിയായിരുന്നു.ഒരു വൃത്തത്തെ 360ഡിഗ്രി വീതമാക്കി ഇവർ വിഭജിച്ചു.ഒരു ദിവസത്തെ 24മണിക്കൂറായും ഒരു മണിക്കൂറിനെ 60 മിനുട്ടായും ഒരു മിനുട്ടിനെ 60സെക്കന്റായും ഇവർ വിഭജിച്ചിരുന്നു.1മുതൽ 9വരെ സംഖ്യകളെ അടയാളപ്പെടുത്തുന്ന രീതി ഇവർ അവലംബിച്ചുപോന്നു.വ്യുൽക്രമങ്ങളുടേയും വർഗ്ഗങ്ങളുടേയും വർഗ്ഗമൂലങ്ങളുടേയും ഘാതങ്ങളുടേയും കൂട്ടുപലിശ കണക്കാക്കുന്നതിനുള്ള പട്ടികയുമെല്ലാം ഇവർ നിർമ്മിച്ചിരുന്നു.ബി.സി 700ന്റെ ആരംഭത്തിൽ ചന്ദ്രനെപ്പറ്റിയും ഗ്രഹങ്ങളെപ്പറ്റിയും പഠനം നടത്തി.ത്രികോണങ്ങളുടെ വശങ്ങളെ സംബന്ധിച്ച പഠനങ്ങളും ഇവർ നടത്തിയിരുന്നു. [തിരുത്തുക] ഈജിപ്തിൽ പാപ്പിറസ് രേഖകളിൽ നിന്നും കിട്ടിയ വിവരമനുസരിച്ച് ബി.സി1800നോടടുത്ത് രചിയ്ക്കപ്പെട്ടവയാണിവ.ഇതിൽ പ്രധാനമായും അങ്കഗണിതത്തിലേയും ക്ഷേത്രഗണിതത്തിലേയും പ്രശ്നങ്ങളാണ് കാണാവുന്നത്.10ന്റെ തുടർച്ചയായ കൃതികളെ സൂചിപ്പിയ്ക്കാൻ 1,10,100 എന്നിങ്ങനെ പ്രത്യേക ഹൈറോഗ്ലിഫിക്സ് ലിപി ഉപയോഗിച്ചു.5നെ സൂചിപ്പിയ്ക്കാൻ 1 അഞ്ച് തവണയും300നെ സൂചിപ്പിയ്ക്കാൻ 100 മൂന്നുതവണയും ആണ് പ്രതീകങ്ങൾ ഉപയോഗിച്ചിരുന്നത്.ക്ഷേത്രഗണിതത്തിൽ വൃത്തം,ചതുരം,ത്രികോണം ഇവയുടെ വിസ്തീർണ്ണം കണ്ടെത്താനും ചിലവയുടെ വ്യാപ്തങ്ങൾ കണ്ടെത്താനും സൂത്രവാക്യങ്ങൾ ഉണ്ടാക്കിയിരുന്നു. [തിരുത്തുക] ഗ്രീസിൽ ബാബിലോണിയയിലേയും ഈജിപ്തിലേയും ഗണിതത്തെ അവലംബിച്ചാണ് ഗ്രീക്ക് ഗണിതശാസ്ത്രം വളർന്നത്.അമൂർത്ത ഗണിതശാസ്ത്രത്തിന്റെ വികാസമായിരുന്നു ഗ്രീക്ക് ഗണിതശാസ്ത്രത്തിന്റെ സംഭാവന.സ്വയംസിദ്ധപ്രമാണങ്ങളും തെളിവുകളും നിരത്തി നിഗമനരീതിയാണ് ഇവർ തുടർന്നുപോന്നത്.ഇക്കാലത്ത് ഥേൽസും പൈത്തഗോറസ്സും ആണ് പ്രമുഖർ.ഏതൊരു നാഗരികതയും നിഗമനരീതി അവലംബിച്ചിരുന്നില്ല എന്നത് ശ്രദ്ധിയ്ക്കപ്പെടേണ്ട ഒരു വസ്തുതയാണ്. [തിരുത്തുക] റോമിൽ ഗണ്യമായ സംഭാവന റോമൻ സംഖ്യാസമ്പ്രദായം ആണ്.എന്നാൽ കണക്കുകൂട്ടുമ്പോൾ അനുഭവപ്പെടുന്ന ന്യൂനതകൾ ഇവയെ അപ്രധാനങ്ങളാക്കി.എന്നിരുന്നാലും, ഈ സമ്പ്രദായം ചിലയിടങ്ങിൽ തുടർന്നുപോരുന്നു. [തിരുത്തുക] ഭാരതത്തിൽ ബി.സി 6ആം നൂറ്റാണ്ടിനു മുൻപുതന്നെ ഭാരതീയഗണിതശാസ്ത്രം വളരേയേറെ പുരോഗതി പ്രാപിച്ചിരുന്നു.സുല്യസൂത്രങ്ങൾ എന്ന ക്ഷേത്രഗണിതഗ്രന്ഥങ്ങൾ എഴുതപ്പെട്ടത് ഇക്കാലത്താണ്.ഋഗ്വേദസംഹിത,തൈത്തിരീയ ബ്രാഹ്മണം തുടങ്ങിയ അതിപുരാതനഗ്രന്ഥാങ്ങളിൽ സൂചിപ്പിച്ചിട്ടുള്ളതായിരുന്നു ഇവ.പല ജ്യാമിതീയരൂപങ്ങളെക്കുറുച്ചും അവയുടെ നിർമ്മിതിയെക്കുറിച്ചുമെല്ലാം ഇതിൽ പ്രതിപാദിയ്ക്കുന്നു.വ്യത്യസ്തമായൊരു സമീപനത്തോടെ യൂക്ലിഡ് പിൽക്കാലത്ത് ഇവ വിശദീകരിയ്ക്കുന്നുണ്ട്.ജൈനമതത്തിന്റെ ആവിർഭാവവും ഗണിതപഠനത്തെ പ്രോത്സാഹിപ്പിച്ചു.ഭാരതീയ ഗണിതശാസ്ത്രകാരന്മാർ ഗണിതസാരസംഗ്രഹം എന്ന ഗ്രന്ഥത്തിന്റെ കർത്താവായ മഹാവീരൻ ശുദ്ധഗണിതത്തിൽ പ്രഗൽഭനായിരുന്നു[അവലംബം ആവശ്യമാണ്]. 10 സ്ഥാനമൂല്യമുള്ള സമ്പ്രദായത്തിന് (ദശാംശസമ്പ്രദായം) പ്രാധാന്യം നൽകി.കൂടാതെ ഭാരതത്തിന്റെ ഏറ്റവും വലിയ സംഭാവന പൂജ്യത്തിന്റെ കണ്ടുപിടുത്തമാണ് (പൂജ്യം ആരും കണ്ടുപിടിച്ചതല്ല.പുജ്യവും മറ്റു സംഖ്യകളെപ്പോലെ ക്രിയകളിൽ ഉൾപ്പെടുത്താമെന്നാണ് കണ്ടുപിടിച്ചത് {Cherish Abraham}). ഭാരതത്തിൽ നിന്ന് ഗണിതവിദ്യ അറബികളിലേക്കെത്തി അവിടെ നിന്നും പാശ്ചാത്യരാജ്യങ്ങളിലേക്കെത്തി എന്നും വിശ്വസിക്കപ്പെടുന്നു. ഭാരതത്തിൽ നിന്നും ലഭിച്ച ഗണിതവിദ്യക്ക് അറബികൾ ഹിന്ദിസാറ്റ് എന്നായിരുന്നു വിളിച്ചിരുന്നത്[3]. [തിരുത്തുക] ഇസ്ലാമിക ഗണിതം എ.ഡി 800ലാണ് ഭാരതീയഗണിതം ബാഗ്ദാദിൽ എത്തിച്ചേരുന്നത്.തുടർന്ന് ഇവർ ഭാരതീയ ഗണിതവും ഗ്രീക് ഗണിതവും അറബിയിലേയ്ക്ക് തർജ്ജമ ചെയ്തു..algebraഎന്ന പദം ഇവരുടെ സംഭാവനയാണ്.എ.ഡി900-1000 കാലഘട്ടത്തിൽ ബീജഗണിത നിർദ്ധാരണങ്ങളിലും ബഹുപദങ്ങളിലും എല്ലാം ഇവർ ഗവേഷണങ്ങൾ നടത്തി.കോണികങ്ങൾ ഉപയോഗിച്ച് ത്രിഘാതസമവാക്യങ്ങൾ നിർദ്ധാരണം ചെയ്ത 12ആം നൂറ്റാണ്ടിലെ പ്രഗൽഭനായ ഗണിതശാസ്ത്രകാരനായിരുന്നു ഒമർ ഖയ്യാം. [തിരുത്തുക] എ.ഡി 5ആം നൂറ്റാണ്ടുമുതൽഎ.ഡി16ആം നൂറ്റാണ്ടുവരെ ഗ്രീസിലും അറബിരാജ്യങ്ങളിലും ഗണിതശാസ്ത്രത്തിൽ ഉണ്ടായ പുരോഗതി പാശ്ചാത്യരാജ്യങ്ങളിൽ ഉണർവ്വേകി.മദ്ധ്യകാലഘട്ടങ്ങളിൽ ഗണിതശാസ്ത്രം ജ്യോതിഷത്തിൽ പ്രയോഗിയ്ക്കാനാണ് ശ്രദ്ധിച്ചത്. ഇറ്റാലിയൻ ഗണിതശാസ്ത്രജ്ഞന്മാരായ ലിയോനാർഡോ ഫിബനോസി,ലൂക പസോളി എന്നിവർ വ്യാപാരകാര്യങ്ങളിൽ ഗണിതശാസ്ത്രം പ്രയോഗിക്കാൻ ശ്രദ്ധിച്ചു.അറബിക് സംഖ്യകളും അറബി-ഹിന്ദു ദശാംശസമ്പ്രദായങ്ങളുമെല്ലാം ഫിബനോസി പാശ്ചാത്യലോകത്തിന് പരിചയപ്പെടുത്തി.അനന്തശ്രേണികൾ ഇക്കാലത്താണ് പഠനങ്ങൾക്ക് വിധേയമാകുന്നത്.രണ്ടാം കൃതിയിലോ മൂന്നാം കൃതിയിലോ ഉള്ള സമവാക്യങ്ങളെ നിർദ്ധാരണം ചെയ്യാനുള്ള സൂത്രവാക്യം കണ്ടുപിടിക്കുകയും തുടർന്ന് സമ്മിശ്രസംഖ്യകൾ രൂപപ്പെടുത്തുകയും ചെയ്തു.കൂടുതൽ സൂക്ഷ്മമായി രേഖപ്പെടുത്താനും മനസ്സിലാക്കുന്നതിനും ചിഹ്നങ്ങൾ ഉപയോഗിച്ചുതുടങ്ങിയത് 16ആം നൂറ്റാണ്ടിലാണ്.+,-,X,=,>,< ഇവയായിരുന്നു ചിഹ്നങ്ങൾ.സമവാക്യങ്ങളിൽ ചരങ്ങൾ ഉപയോഗിയ്ക്കാൻ തുടങ്ങി. [തിരുത്തുക] എ.ഡി 16ആംനൂറ്റാണ്ടുമുതൽ എ.ഡി19ആം നൂറ്റാണ്ടുവരെ ശാസ്ത്രവിപ്ലവം നടന്ന കാലഘട്ടമാണ് 17ആം നൂറ്റാണ്ട്.ഇക്കാലത്ത് ന്യൂട്ടൺ,കെപ്ലർ,കോപ്പർ നിക്കസ്,ഗലീലിയൊ തുടങ്ങിയവർ ഗണിതശാസ്ത്രത്തെ അടിസ്ഥാനമാക്കി തങ്ങളുടെ പഠനങ്ങൾ നടത്തി.ഗലീലിയോ വ്യാഴത്തിന്റെ ഉപഗ്രഹങ്ങളെ കണ്ടെത്തി.റ്റൈക്കോ ബ്രാഹെ ഗ്രഹങ്ങളുടെ സ്ഥാനത്തെക്കുറിച്ചുള്ള വിവരങ്ങൾ ഗണിതദത്തങ്ങളുടെ സഹായത്തോടെ അവതരിപ്പിച്ചു.ഇദ്ദേഹത്തിന്റെ ശിഷ്യനായിരുന്ന ജോഹന്നാസ് കെപ്ലർ ഈ ദത്തങ്ങളുപയോഗിച്ച് പഠനം നടത്തുകയും ഗ്രഹചലനങ്ങളെപ്പറ്റിയുള്ള ഗണിതീയവാക്യങ്ങൾ രൂപപ്പെടുത്തുകയും ചെയ്തു.റെനെ ദെക്കർത്തേയാണ് പരിക്രമണപഥങ്ങളെയെല്ലാം നിർദ്ദേശാങ്കങ്ങളുടെ സഹായത്തോടെ ചിത്രീകരിച്ചത്.ന്യൂട്ടൺ കലനശാസ്ത്രത്തിന് ആരംഭം കുറിയ്ക്കുകയും ലെബ്നിസ് പോഷിപ്പിയ്ക്കുകയും ചെയ്തു. [തിരുത്തുക] ഗണിതശാസ്ത്രശാഖകൾ * അങ്കഗണിതം (Arithmethics) * ബീജഗണിതം (Algebra) * ക്ഷേത്രഗണിതം (ജ്യാമിതി അഥവാ രേഖാഗണിതം) (Geometry) * സ്ഥിതിഗണിതം (Statistics) * ത്രികോണമിതി (Trignometry) * കലനം (Calculus) [തിരുത്തുക] ഗണിതശാസ്ത്രശാഖകളുടെ ആവിർഭാവം മദ്ധ്യശതകങ്ങൾ വരെ ഗണിതശാസ്ത്രത്തിന് 3 ശാഖകളായിരുന്നു ഉണ്ടായിരുന്നത്.ക്ഷേത്രഗണിതം,ബീജഗണിതം,അങ്കഗണിതം എന്നിങ്ങനെ.ക്ഷേത്രഗണിതം ഈജിപ്തിലായിരുന്നു വളർന്നത്. അങ്കഗണിതം ഭാരതത്തിലും.17ആം നൂറ്റാണ്ടിൽ റെനെ ദെക്കാർത്തെ ക്ഷേത്രഗണിതത്തെ ബീജഗണിതവുമായി യോജിപ്പിച്ച് വിശ്ലേഷക ജ്യാമിതിയ്ക്ക്(Analytical geometry) രൂപം നൽകി.അധികം താമസിയാതെ സമ്മിശ്ര വിശ്ലേഷണം(Complex analysis) എന്ന ഗണിതശാഖ ബീജഗണിതത്തിന്റെ അതിപ്രധാനശാഖയായി വളർന്നുവന്നു.ചൂതുകളിക്കാരനായ ഷെവ്ലിയർ ദ് മേരെ തനിയ്ക്ക് കളിയ്ക്കിടയിൽ അനുഭവപ്പെട്ട വിചിത്രപ്രതിഭാസങ്ങൾക്ക് വ്യാഖ്യാനം തേടി ഫ്രഞ്ച് ഗണിതശാസ്ത്രജ്ഞനായ പാസ്കലിനെ സമീപിച്ചത് സംഭവ്യതാശാസ്ത്രത്തിന്(Probability theory) വഴിയൊരുക്കി.ഇരുപതാം നൂറ്റാണ്ടിൽ ഇതേത്തുടർന്ന് ഈ ശാഖയുടെ അനുപ്രയുക്തശാഖയായി സാംഖ്യികം(Statistics) രൂപപ്പെട്ടു. പതിനെട്ടാം നൂറ്റാണ്ടിൽ കലനശാസ്ത്രം(Calculus) എന്ന ശാഖയുടെ ആവിർഭവം ഗണിതശാസ്ത്രത്തിന്റെ നാഴികക്കല്ലാണ്.സർ ഐസക് ന്യൂട്ടണും ലെബ്നീസും ചേർന്ന് രൂപം നൽകിയ ഈ ശാഖയെ ബെർണൗലി വികസിപ്പിച്ചു.പത്തൊൻപതാം നൂറ്റാണ്ടിന്റെ മദ്ധ്യകാലഘട്ടത്തോടടുത്ത് ആവിർഭവിച്ച പ്രധാനപ്പെട്ട ഒന്ന് ഗണിതാപഗ്രഥനം(Mathematical analysis) ആയിരുന്നു.യൂക്ലിഡേതര ക്ഷേത്രഗണിതം(Non-Eucledian geometry) ,ആധുനിക ബീജഗണിതം(Modern algebra) ഇവ രംഗപ്രവേശം ചെയ്തതും ഇക്കാലത്താണ്. [തിരുത്തുക] പ്രയുക്ത,ശുദ്ധ ഗണിതശാസ്ത്രം പ്രയുക്തഗണിതശാസ്ത്രത്തേക്കാൾ ഗഹനം ശുദ്ധഗണിതശാസ്ത്രം ആണ്.ശുദ്ധഗണിതശാസ്ത്രം സംഖ്യകൾക്ക് പകരം പ്രതീകങ്ങളുപയോഗിച്ച് സിദ്ധാന്തങ്ങളും സർവ്വസാധാരണയായി അംഗീകരിയ്ക്കപ്പെടുന്ന രീതിയിൽ അവയുടെ തെളിവുകളും ആണ് കൈകാര്യം ചെയ്യുന്നത്.ജി.എച്ച്.ഹാർഡി ഈ മേഖലയിൽ പ്രധാനിയാണ്.1800നോടടുത്താണ് ഈ മേഖലയിൽ പുരോഗതിയുണ്ടായത്.തെളിവുകളും വിശ്ലേഷണവുമെല്ലാം ഉപയോഗിച്ചുതുടങ്ങിയ കാലഘട്ടമായിരുന്നു ഇത്.തെളിവുകൾ ഫലത്തോടൊപ്പമോ അതിനേക്കാളുപരിയായോ ശ്രദ്ധിയ്ക്കപ്പെടാൻ തുടങ്ങി.തെളിവുകളുടെ പ്രാധാന്യം അവയുടെ സംക്ഷിപ്തവും ലാളിത്യത്തിലും അടങ്ങിയിരിയ്ക്കുന്നു.ബെർണാർഡ് റസ്സൽ ഇതേക്കുറിച്ച് പരാമർശിയ്ക്കുന്നുണ്ട്. പേരുസൂചിപ്പിയ്ക്കും പോലെത്തന്നെ പ്രായോഗികതലത്തിലാണ് പ്രയുക്തഗണിതശാസ്ത്രത്തിന് പ്രാധാന്യം.ധനതത്വശാസ്ത്രം,ഭൗതിക ശാസ്ത്രം തുടങ്ങിയവയിലെല്ലാം ഈ ശാഖ പ്രയോഗിയ്ക്കുന്നുണ്ട്.പ്രയുക്തഗണിതശാസ്ത്രമാണ് ശുദ്ധഗണിതശാസ്ത്രത്തേക്കാൾ പഴക്കം അവകാശപ്പെടുന്നത്.മറ്റുശാഖകളോടൊപ്പം വികസിച്ചുവന്ന ഈ ശാഖ അവയെ കൂടുതൽ അടിസ്ഥാനമാക്കാനാണ് ഉപയോഗിച്ചത്. [തിരുത്തുക] ഭാരതീയ ഗണിത ശാസ്ത്രജ്ഞൻമാർ [തിരുത്തുക] AD 1800 നു മുമ്പ് * ആര്യഭടൻ * ബ്രഹ്മഗുപ്ത * മഹാവീരൻ * ഭാസ്കരാചാര്യൻ * വരാഹമിഹിരൻ * ഭാസ്കരൻ I * ശ്രീധരൻ * വടേശ്വരൻ * ആര്യഭടൻ II * മഞ്ജുളൻ * ശ്രീപതി * മാധവൻ * നാരാണൻ * പരമേശ്വരൻ നമ്പൂതിരി * പുതുമന സോമയാജി * നീലകണ്ഠ സോമയാജി * ജ്യേഷ്ഠദേവൻ * ബ്രഹ്മദത്തൻ * കടതനാട്ട് ശങ്കരവർമ തമ്പുരാൻ [തിരുത്തുക] AD 1800 നു ശേഷം * ശ്രീനിവാസ രാമാനുജൻ * എ.എ.കൃഷ്ണസ്വാമി അയ്യങ്കാർ * പി.സി.മഹൽനോബിസ് * എസ്.എൻ.ബോസ് [തിരുത്തുക] AD 1900 നു ശേഷം * എസ്.ചന്ദ്രശേഖർ * സി.ആർ.റാവു * ശകുന്തളാ ദേവി * കെ.എസ്.എസ്.നമ്പൂതിരിപ്പാട് * മൻജൂൾ ഭാർഗവ * ഭാമ ശ്രീനിവാസൻ
No comments:
Post a Comment